
Building SBT Plugins
Mads Hartmann Jensen

@mads_hartmann
http://mads379.github.com/

Code shown in presentation:
https://github.com/mads379/sbt-plugin-examples

Friday, January 27, 12

mailto:mads379@gmail.com
mailto:mads379@gmail.com
https://github.com/mads379/sbt-plugin-examples
https://github.com/mads379/sbt-plugin-examples

The Simple Steps

• Setting up your build definition

• Implementing your plugin

• Running it

Agenda

Friday, January 27, 12

In Your build.sbt file

sbtPlugin := true

name := "example-plugin"

organization := "org.example"

Setting up your build definition

Friday, January 27, 12

Two ways to do it

• “A plugin extends the build definition, most
commonly by adding new settings”

• Will show

• A plugin that provides a command

• A plugin that provides some settings

• A plugin with tab-completion

Implementing your plugin

Friday, January 27, 12

Command Plugin

• For when you don’t need customization

Implementing your plugin

Friday, January 27, 12

Command Plugin

import sbt._
import Keys._

object CommandPlugin extends Plugin {

 override lazy val settings = Seq(commands += myCommand)

 lazy val myCommand =
 Command.command("hello") { (state: State) =>
 println("Hi there!")
 state
 }
}

Implementing your plugin

Friday, January 27, 12

Command Plugin

• In ~/.sbt/plugins/build.sbt or
 <project>/project/build.sbt

Implementing your plugin

addSbtPlugin("com.sidewayscoding" % "settings-plugin" % "0.1")

Friday, January 27, 12

Command Plugin

• For local development (trail/error) create a
project with the build definition:
<project>/project/project/build.scala

Implementing your plugin

import sbt._
import Keys._

object Playground extends Build {

 val commandPlugin = RootProject(file("../../command-plugin"))

 lazy val root = Project(id = "playground", base = file("."))
 .dependsOn(commandPlugin)
}

Friday, January 27, 12

Command Plugin
Implementing your plugin

Demo

Friday, January 27, 12

Settings Plugin

• Useful when your plugin is customizable

Implementing your plugin

Friday, January 27, 12

Settings Plugin

import sbt._

object SettingsPlugin extends Plugin {

 val newTask = TaskKey[Unit]("new-task")
 val newSetting = SettingKey[String]("new-setting")

 val newSettings = Seq(
 newSetting := "test",
 newTask <<= newSetting map { str => println(str) }
)

}

Implementing your plugin

Friday, January 27, 12

Settings: Using it

• In ~/.sbt/plugins/build.sbt or
 <project>/project/build.sbt
addSbtPlugin("com.sidewayscoding" % "settings-plugin" % "0.1")

• In <project>/build.sbt

seq(SettingsPlugin.newSettings : _*)

newSetting := "light"

Running it

Friday, January 27, 12

Settings: Using it
Running it

Demo

Friday, January 27, 12

Tab-completion

• Parsing input and providing tab-completions
through Parser Combinators

Implementing your plugin

Friday, January 27, 12

Tab-completion
import sbt._
import Keys._
import Defaults._
import complete.DefaultParsers._
import complete.{ Parser }

object ParserPlugin extends Plugin {

 override lazy val settings = Seq(commands += cmd)

 lazy val cmd = Command("parserCmd")(_ => parser)(action _)

 type parseResult = ...

 lazy val parser: Parser[parseResult] = ...

 def action(st: State, parsed: parseResult): State = ...

}

Implementing your plugin

Friday, January 27, 12

Demo

Tab-completion
Implementing your plugin

Friday, January 27, 12

